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ABSTRACT 

The purposes of our research were: 

1. To develop an economical, easy to use, automated, high throughput system for 

large scale protein crystallization screening. 

2. To develop a new protein crystallization method with high screening efficiency, 

low protein consumption and complete compatibility with high throughput screening system. 

3. To determine the structure of lactate dehydrogenase complexed with NADH by x-

ray protein crystallography to study its inherent structural properties. 

Firstly, we demonstrated large scale protein crystallization screening can be 

performed in a high throughput manner with low cost, easy operation. The overall system 

integrates liquid dispensing, crystallization and detection and serves as a whole solution to 

protein crystallization screening. The system can dispense protein and multiple different 

précipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, 

has been developed in this system to form a two-detector system with a visible light detector 

for detecting protein crystallization screening results. This detection scheme has capability of 

eliminating common false positives by distinguishing protein crystals from inorganic crystals 

in a high throughput and non-destructive manner. The entire system from liquid dispensing, 

crystallization to crystal detection is essentially parallel, high throughput and compatible with 

automation. The system was successfully demonstrated by lysozyme crystallization 

screening. 

Secondly, we developed a new crystallization method with high screening efficiency, 

low protein consumption and compatibility with automation and high throughput. In this 

crystallization method, a gas permeable membrane is employed to achieve the gentle 

evaporation required by protein crystallization. Protein consumption is significantly reduced 

to nanoliter scale for each condition and thus permits exploring more conditions in a phase 
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diagram for given amount of protein. In addition, evaporation rate can be controlled or 

adjusted in this method during the crystallization process to favor either nucleation or 

growing processes for optimizing crystallization process. The protein crystals gotten by this 

method were experimentally proven to possess high x-ray diffraction qualities. 

Finally, we crystallized human lactate dehydrogenase 1 (H4) complexed with NADH 

and determined its structure by x-ray crystallography. 

The structure of LDH/NADH displays a significantly different structural feature, 

compared with LDH/NADH/inhibitor ternary complex structure, that subunits in 

LDH/NADH complex show open conformation or two conformations on the active site while 

the subunits in LDH/NADH/inhibitor are all in close conformation. 

Multiple LDH/NADH crystals were obtained and used for x-ray diffraction 

experiments. Difference in subunit conformation was observed among the structures 

independently solved from multiple individual LDH/NADH crystals. 

Structural differences observed among crystals suggest the existence of multiple 

conformers in solution. 
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CHAPTER 1 GENERAL INTRODUCTION 

DISSERTATION ORGANIZATION 

Starting with a general introduction about structural proteomics, x-ray protein 

crystallography and related techniques, this dissertation continues with three complete 

scientific manuscripts in the following chapters. A final chapter summarizes the work and 

provides some prospects for future research. 

STRUCTURAL PROTEOMICS 

High Throughput Structure Determination 

To realize the real value of the wealthy genome sequence information obtained from 

several completed genome projects, the sequences must be correlated to the proteins they 

encode and the biological functions of those proteins. Since protein structure determines its 

function, large scale protein structure determination with the goal of establishing structural 

function relationships, termed as structural proteomics, has been the natural progression to 

further characterize the genome in this post-genomic era [1-5]. 

Protein structure is better conserved than sequence in evolution, comparing protein 

structures can reveal homology undetectable by sequence comparison and thus can quickly 

suggest the biological function of an uncharacterized protein [2], Protein structure and 

function relationship can also increase understanding of protein design principles and could 

have application in protein engineering [3]. Protein structure also provides a direct insight 

into the molecular mechanism of important biological processes [2], In pharmaceutical 

industry, protein structure could guide lead molecules optimization process, which has been 
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proven to be a very challenging task. This strategy of structure-guided or rational drug design 

has been demonstrated by the success in finding inhibitors for influenza virus neuraminidase 

and inhibitors for HIV proteinase [4, 9]. 

X-RAY PROTEIN CRYSTALLOGRAPHY 

The current primary methods for three dimensional protein structure determination 

are x-ray protein crystallography and NMR [5]. Protein structure determination by x-ray 

crystallography requires a protein crystal in good quality with a reasonable size. NMR is a 

technique for structure determination from a protein in solution. The difficult protein 

crystallization process is not required by NMR. However, NMR is normally limited to 

proteins with molecular weights less than 3OK [5]. In contrast, x-ray crystallography can 

determine protein structure with almost any molecular weight and complexity as long as a 

well ordered crystal can be obtained. This makes x-ray crystallography the working horse for 

most protein structure determination nowadays. 

History of Protein Crystallography 

X-ray crystallography has been an extremely successful technique for small molecule 

structure determination for more than 70 years [6], However, protein crystallography is a 

relative young technique. Although the first published observation of protein crystallization 

was in 1840 [7], the first protein structure, that of myoglobin, was solved by x-ray 

crystallography in 1960, only 46 years ago. Since then, protein crystallography has been used 

for the determination of more than 15,000 protein structures [5, 6], 

In the past two decades, protein crystallography was revolutionized by the advances 

of data collection and computing techniques [6], The traditional phasing problem of protein 

crystallography becomes easier because of the emergence of a multiple-wavelength 
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anomalous diffraction (MAD) technique [8, 14], which benefits from the availability of a 

tunable x-ray source from synchrotron radiation and the protein expression technique for 

incorporating seleno-methionine into protein for anomalous scattering [8,14]. 

Principles of Protein Crystallography 

X-ray is electromagnetic wave in nature. X-ray diffraction by an atom is an 

interaction between the electrons of the atom and the electric and magnetic components of 

the x-rays. The electron of an atom oscillates with the same frequency under the influence of 

the electromagnetic wave of incident x-ray and thus absorbs energy and then emits radiation 

of the same frequency. The nucleus in the atom can also interact with electromagnetic wave, 

but it is so massive that its scattering is negligible. There is a relationship between the 

properties of the emitted radiation (diffracted x-ray light) and the electron density distribution 

in the atom. For x-ray light diffracted by a molecule, obviously, the properties of the emitted 

radiation would be decided by the electron density distribution or the structure of the 

molecule. Therefore, the information on the properties of the diffracted x-ray light can be 

used to trace back to the electron density distribution in the molecule and thus the molecular 

structure can be determined [6, 10, 11]. 

However, the scattered x-ray light by a single molecule is too small to be measured 

experimentally. If a large number of molecules scatter x-ray light in a cooperatively way so 

that all the scattered x-ray lights can be summed together in a constructive way (instead of 

canceling each other), the overall scattered or diffracted x-ray would be much larger than the 

x-ray light diffracted by a single molecule. If the number of the molecules in cooperation is 

large enough, the overall scattered x-ray light intensity would be large enough to be detected 

by a photon sensitive detector such as photographic film or charge coupled device (CCD). 

For those large numbers of molecules, in order to able to diffract x-ray light in a constructive 
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way, they have to be well ordered or located periodically in space. Such entity is essentially a 

crystal [6, 10, 11]. 

X-ray Sources and Detectors 

X-rays are electromagnetic radiation with wavelengths in the range from 1000 

angstrom to 0.1 angstrom. For x-ray crystallography, usually x-ray with wavelengths 

between 1.6 angstrom to 0.5 angstrom are used. In x-ray instrument for general laboratory 

use, the x-ray light is usually produced by a copper anode at 1.54 angstrom or molybdenum 

anode at 0.71 angstrom [6, 11]. 

X-ray generated in this way has limited intensity because of the limited rate of heat 

dissipation. It is usually difficult to grow large size protein crystals [7], Therefore, high 

intensity x-ray light is preferred for protein crystallography. In the past two decades, intense 

x-ray radiation from electron synchrotrons have become more and more popular in protein 

crystallography because of its nature of high intensity and tunability in wavelength [10,11]. 

X-rays with continuous wavelengths make the full range from 0.5 angstrom to 1.6 

angstrom fully accessible for use. More importantly, x-rays from synchrotron radiation are 

wavelength tunable. This makes an important phasing method named as multiple-wavelength 

anomalous diffraction (MAD) widely used, which makes the traditional phasing problem 

becomes much easier to solve [14]. 

Single Photon Counters were used in the early days of x-ray crystallography, 

providing very accurate measurement. However, it takes a long time (weeks) to finish one 

complete data set because of its sequential nature. 

Photographic film had been a classic detector for crystallography. It is an area 

detector. Though less sensitive, photographic film has superior resolution to modern area 

detectors. 
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Image plates as x-ray detectors have the advantage of one magnitude higher 

sensitivity and much larger dynamic range over photographic film. In addition, it is more 

sensitive at short wavelengths that make absorption correction unnecessary [10]. 

Charge coupled devices (CCD) have been used as the detectors. It is more sensitive 

than photographic film. It has large dynamic range, excellent spatial resolution, low noise 

level and fast data transfer rates [10]. 

Solving Structures 

The mathematical principles behind x-ray diffraction are not complicated. The 

diffraction pattern formed by a crystal is the Fourier transform of the crystal. However, in the 

x-ray diffraction experiments, only intensities of those diffracted x-rays are recorded on 

detectors. The phase information, which is critical for description of the diffracted x-ray is 

totally lost. It's not a real problem for small molecules because of the limited number of 

atoms involved in diffraction and thus limited possibilities of phases. However, for protein 

crystallography, the number of atoms in a protein molecule is very large and thus makes the 

phasing problem difficult to solve. 

Taking advantage of other information available, for protein crystallography, the 

following methods have been mainly used for solving the phase problem: Molecular 

Replacement, Isomorphous Replacement and Anomalous Scattering, 

Molecular Replacement 

If a similar protein structure is available, the structure of the unknown protein 

molecule can be solved by the method named molecular replacement solely from the 

intensities of diffraction pattern without any experimental or other phase information. This 

method has been getting more and more application with more protein structures determined 

resulting from the efforts of structural proteomics. 
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Isomorphous Replacement 

Based on the fact that more than 50% content of a protein crystal is solvent, M. F. 

Perutz [12, 13] developed a phasing method called Isomorphous Replacement. In this 

method, heavy atoms can be introduced into protein crystals by diffusion to generate crystal 

derivatives, which are structurally identical to the native crystal with the only exception of 

the presence of the heavy atoms. Since heavy atoms scatter x-ray light more strongly than 

light ones because of their higher atomic number, diffraction data from a series of crystal 

derivatives contain useful phase information sufficient for solving the structure of the native 

crystal. 

Anomalous Scattering 

There are two ways to use anomalous dispersion for phase determination: single-

wavelength anomalous dispersion (SAD) and multiple-wavelength dispersion (MAD). With 

the advent of powerful synchrotron radiation and protein expression technique, multiple 

wavelength anomalous scattering has almost become the standard method for phase 

determination. 

To use anomalous dispersion, anomalously scattering atoms are incorporated into 

recombinant proteins by replacing normal sulfur-containing methionine with selenium 

methionine. The selenium atoms normally sufficiently provide anomalous scattering in a 

crystal. For SAD, two data sets are collected on both native and derivative crystals. Only one 

wavelength is chosen. In a similar way to Isomorphous Replacement, phase information can 

be obtained. For MAD, since anomalous scattering power of selenium atoms is radiation 

wavelength dependent, a series of diffraction patterns with appreciable changes in intensity 

can be generated by simply varying the wavelength of incident x-ray synchrotron radiation 

[14]. Phase information can be obtained by solely using the anomalous dispersion as in MAD 

method. In a MAD structure determination, since only one crystal is used for the entire data 



www.manaraa.com

7 

collection, isomorphism is perfect. Moreover, unlike isomorphous replacement, MAD can 

provide good phase information at high resolution [6, 14]. 

PROTEIN CRYSTALLIZATION 

Characteristics of Protein Crystals 

There are significant differences between protein crystals and small molecule 

(inorganic or organic) crystals in many aspects including physical (such as optical properties) 

and mechanical properties, growth mechanism and internal networks forming crystal lattice. 

Those differences have profound implications on protein growth methods, x-ray diffraction 

data collection strategies and data qualities [15-24], 

The striking and important difference between protein crystals and small molecule 

crystals is the high percentage of solvent in protein crystals, which is normally 50% to 70% 

[25]. This feature of protein crystals results in their unique diffraction and other physical 

properties. Protein crystals are thus mechanically very weak. Great care needs to be taken for 

protein crystal handling. Protein molecules in a crystal are surrounded by ordered, structural 

water molecules, which make the protein molecules still biologically active [27], and thus 

very likely have similar structures as in solution. 

Resulting from the large amount of solvent content, for storage or data collection, 

protein crystals must be preserved in an environment with humidity control or must be flash 

cooled at cryogenic temperature for keeping hydration and thus integrity. Otherwise, protein 

crystals will lose water and completely lose internal order and their diffraction capabilities. 

[28-34] 

There are fewer and weaker lattice constraints in a protein crystal than small molecule 

crystals. The interactions among protein molecules are also weak. Therefore, protein crystals 
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are generally less ordered and show lower diffraction qualities compared with traditional 

crystals [15-34], 

Principles of Protein Crystallization 

Some studies show protein growth mechanisms are similar to those for small 

molecule crystals, which include spiral dislocations, two-dimensional nucleation on surfaces, 

random nucleation and normal growth [19, 21, 35], 

It has been shown by AFM study that the characteristic kinetic parameters of protein 

crystal growth are significantly lower than those for traditional crystals by a factor of two or 

three magnitudes [15, 17, 36-41], In practice, small molecule crystals can grow in minutes or 

days while protein crystallization takes days to weeks or even months. 

Protein crystallization normally occurs at conditions at which protein molecules are in 

their native conformations. These conditions are normally neutral, biological pHs, biological 

temperatures and non-denaturing conditions. 

METHODS FOR PROTEIN CRYSTALLIZATION 

There are currently two main methods for protein crystallization: Vapor diffusion and 

microbatch. The main goal of these two crystallization methods is to achieve 

supersaturation at a slow rate since proteins take long time to crystallize (If the 

supersaturation is achieved too fast, precipitation instead of crystals will be obtained.). 

Vapor Diffusion 

There are two modes of this method: sitting-drop and hanging-drop. Usually two 

microliter protein solution is mixed with two microliter precipitant/well solution and then is 

dispensed to a siliconized cover slip. For hanging drop method, the mixed protein/precipitant 

solution drop is suspended by surface tension on the surface of an inverted cover slip, which 
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forms a close chamber by covering and sealing a well with precipitant solution inside. For 

sitting-drop method, the mixed protein/precipitant solution drop sitting on the bottom of a 

well is physically separated in solution phase from the precipitant solution by a barrier in the 

well, but it is connected in the air phase with the precipitant solution. Resulting from the 

difference in the concentration of precipitant, there is a vapor diffusion process occurring 

between two solutions in vapor diffusion methods. Since it is a slow vaporization process, it 

greatly favors the slow protein crystallization process. 

Vapor diffusion is a popular method for protein crystallization, especially for manual 

operation of the experiments. It is suitable for screening a large range. Moreover, it is 

economic, convenient and easy to perform manually. 

Microbatch 

To use this method, microliter protein solution is mixed with precipitant solution and 

then put in an oil drop. A series of precipitant concentrations will be used for screening 

purpose. But, for one drop, the concentration of the precipitant usually does not change much 

over the time. Basically only one condition is explored for each drop in the oil. The 

advantage of this method is that the best crystallization can be well defined in the screening 

experiments since the condition for each well is not changed over time. This is good for later 

optimization experiment to grow larger crystals. 

HIGH THROUGHPUT SCREENING FOR PROTEIN 

CRYSTALLIZATION 

Despite the great efforts on studying protein crystallization mechanisms [15, 17, 19, 

21,35-41], protein crystallization is still currently underdeveloped science, which is mainly a 

trial-and-error procedure [10]. 
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Currently, there is still no effective theories that can help predict protein 

crystallization conditions. Therefore, the practical strategy is to screen a large number of 

combinations of pH, salt concentration, précipitants and so forth. If any promising conditions 

are found, further finer screening will be executed with the goal of optimizing the condition 

for growing large size crystal for x-ray diffraction experiments. 

Problems of Current Methods 

The traditional crystallization methods such as vapor diffusion and microbatch 

method are currently employed for large scale crystallization screening. The mechanical 

operations required for applying these two methods are relatively complicated for 

automation. Therefore, in most efforts on achieving high throughput and automated 

crystallization screening, various robots are employed [42-49], 

Although the strategy of employing robots has achieved impressively high 

throughput, robots are expensive and demand professional maintenance from time to time 

and are not accessible for most biologists and regular users. The visible light detection 

method in those systems often encounters the difficulty of complicated background. In 

addition, for microbatch method, the crystallization components in the mother liquor 

sometimes can interact with oil and interfere with the crystallization process [50]. 

THE GOALS 

The first goal is to develop an economical, easy to operate, high throughput and 

automated system without using high cost high maintenance robots. The second goal is also 

to develop a new crystallization method that can provide high screening efficiency, low 

protein consumption, complete compatibility with automated, high throughput screening 

systems. The third goal is to develop a new detection scheme that can eliminate the common 

false positives but still work in a high throughput automated manner. 
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At last, the fourth goal is also to use protein crystallography tools to determine the 

structure of LDH/NADH complex in order to reveal the inherent structural properties of this 

important enzyme. 
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CHAPTER 2 AUTOMATED HIGH THROUGHPUT NANO 

LITER SCALE PROTEIN CRYSTALLIZATION SCREENING 

Fenglei Li and Edward S. Yeung* 

ABSTRACT 

A highly efficient method has been developed for automated and high throughput 

nanoliter scale protein crystallization screening. The overall system consists of liquid 

dispensing, crystallization and detection and serves as a whole solution to protein 

crystallization screening. The novel, cost-effective, high throughput, automated liquid 

dispensing system can dispense protein and multiple different précipitants in nanoliter scale 

and in parallel. A new detection scheme, native fluorescence, with a joint complementary 

visible light detection, has been employed in this system for detecting the protein 

crystallization screening results. The detection part has the capability of distinguishing 

protein crystals from inorganic crystals in a high throughput and non-destructive way. The 

whole method from liquid dispensing, crystallization, to crystal detection is essentially 

parallel, high throughput and automatic. The system was successfully demonstrated by 

lysozyme crystallization screening. 
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INTRODUCTION 

In the past few years, an incredible wealth of genetic sequence information enabling 

our better understanding on many living organisms has become available with the completion 

of several genome projects [1-3]. These genetic information must be correlated to the 

biological functions of the proteins they encode for realization of their real values [2], The 

biochemical functions of proteins, the working agents of life, are decided by their three 

dimensional structures [2]. Therefore, functional genomics or proteomics including the 

determination of three dimensional structures of protein has been considered the natural but 

critical next step after genome sequencing era [2], 

Structural proteomics is an effort to determine the three dimensional structures of 

proteins on a genome-wide scale in order to facilitate a better understanding of the 

relationship between protein sequence, structure and function [2], Several pilot structural 

proteomics, aiming to generate a set of experimentally determined and computationally 

augmented protein structures representing most tractable proteins, have been underway [1,2, 

4, 9]. 

There are two primary techniques at present available for three dimensional protein 

structure determination at atomic resolution—x-ray crystallography and nuclear magnetic 

resonance (NMR) [11]. X-ray crystallography can be used to determine the structures of 

those proteins crystallizable, which is the case for most globular proteins, regardless of 

protein size and complexity [11]. NMR can be employed to determine the structures of 

proteins in solution, which don't have to be crystallized. It has the advantage of defining 

some certain dynamic properties of proteins. But NMR is generally limited to proteins with 

molecular weight of less than 30 kDa [11]. 

Currently, the predominant method for determination of three dimensional structures 

of biological macromolecules is X-ray crystallography [12]. Significant advances have been 
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achieved in protein preparation, X-ray data analysis and so on [13]. However, protein 

crystallization still remains as a bottleneck of X-ray crystallography [13]. Protein 

crystallization is currently still a "black area" with trail-and-error processes. There is no 

theory or recipe that can effectively predict the conditions where a protein crystallizes [15]. 

The current method to get around this problem is to screen a large number of chemical and 

physical conditions such as pH, temperature, ionic strength and concentrations of precipitant 

and additives [14, 15] to determine the initial crystallization conditions. Obviously the 

number of conditions that need to be screened will be quickly added up at an exponential 

rate. This requires a large amount of protein. However, even though one employs the most 

recent methods for cloning and protein expression, only submilligram or lowmilligram 

proteins can be generated without stupendous expenditures of resources [19]. The 

conventional crystallization methods usually use microliter protein sample for each condition 

they screen. The availability of protein essentially limits the number of conditions that can be 

screened. The traditional methods such as vapor diffusion and microbatch method are also 

labor-intensive and time-consuming. Developing high throughput, automatic and 

miniaturized protein crystallization method is critical if one also considers the fact that there 

are about 20,000-25,000 protein-coding genes in human genome [22]. 

There are some efforts on improving the throughput of protein crystallization 

screening and decreasing protein consumption in recent years [15-19], However, most of 

them were involved in using sophisticated and expensive commercial liquid handling system 

in order to be able to deliver nanoliter solutions in a high throughput. These work employed 

the regular or modified vapor diffusion method or microbatch method, which usually 

requires sophisticated operations by expensive robots for automation. The visible light 

detection scheme employed in those work suffers the problems such as complicated 

background which makes crystal reorganization more difficult and incapability of 

distinguishing protein crystals from inorganic crystals. In those works, each well was 
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detected in a sequential way and thus the throughput is limited. In the current work, a novel, 

inexpensive and easy-made liquid handling system was introduced. This system has the 

capability to deliver multiple nanoliter protein solutions and précipitants simultaneously and 

thus significantly improves the throughput of protein crystallization screening. A brand new 

protein crystallization we just developed [20] is employed in this system. It is highly 

amenable to automation and high throughput and essentially eliminates the need for 

complicated robots. Moreover, here we introduce a brand new detection scheme, 

fluorescence detection, to protein crystallization screening research field. This detection 

scheme provides a novel capability of distinguishing protein crystals from inorganic crystals, 

which can't be done by the regular visible light detection scheme. The fluorescence detection 

designed in this system is especially highly compatible with automatic and high throughput 

protein crystallization screening. Working with a complementary visible light detection 

scheme in the same system, fluorescence detection provides a new but better solution for 

protein crystallization screening detection compared with the regular detection method. Each 

step in this system is especially suitable for automation and high throughput. The overall 

system provides a much better solution to every step required in protein crystallizations 

screening process: liquid handling, crystallization and detection. 

EXPERIMENTAL SECTION 

Parallel Liquid Handling System 

The liquid handling system consists of one syringe pump, two 81 -capillary bundles 

and 81 vials containing different précipitants (Table 1). Each vial is full of one kind of 

precipitant and has one capillary as inlet and one as outlet. Each vial is sealed by a cap. All 

inlet capillaries are connected to the syringe pump via PEEK tubing. All outlet capillaries are 
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fixed at a capillary array holder and carefully aligned so that all the openings are in the same 

plane. The syringe pump was controlled by a personal computer. A 5mL syringe was used on 

the syringe pump. The syringe pump was purchased from Kloehn Ltd, Las Vegas, NV. The 

capillaries were purchased from Polymicro (Polymicro Technologies, LLC, Phoenix, AZ), 

whose inner diameter is 250 micrometer and the outer diameter is 360 micrometer. PEEK 

tubing was purchased from Upchurch Scientific, Inc. (Oak Harbor, WA). The small CCD and 

the three dimensional translational stage was purchased from Edmund Optics. 

Before every use of this system, care was taken to make sure the syringe was full of 

water and free of air bubbles; all the inlet capillaries between the syringe and the vials were 

full of water and free of air bubbles as well; the vials were carefully filled with all kinds of 

précipitants desired for screening and free of air bubbles; each outlet capillary was filled with 

the precipitant which it is connected to and free of air bubble. 

81-weII Protein Crystallization Plate 

The protein crystallization plate is made of fused silica. The plate was made by 

ultrasonic machining because of the brittle property of fused silica. It has 9 by 9, totally 81, 

small wells. The diameter of each well is 1.2 mm and the spacing between wells is 500 nm. 

The depth of each well is 2.5 mm. The fused silica was purchased from Heraeus Optics, Inc. 

Before each use, the plate was carefully cleaned by an ultrasonic device. 

Fluorescence Detection System 

The detection system is showed as Figure 4. The excitation source is a 500 W Hg(Xe) 

Arc lamp(Oriel, Stamford, CT). An intense UV band (270-320 nm) comes from the lamp. 

Three optical filters were employed as excitation filters. These three filters are as follows: a 

color glass filter (UG-5, Schott Glass, Duryea, PA; 80% transmittance between 250-380 nm; 
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85% transmittance at 280 nm); a customized interference band-pass filter(Omega Filters, 

Brattleboro, VT; center wavelength: 280 nm, 20% transmittance; FWHM: 35 nm ); an 

interference band-pass filter (CVI, Albuquerque, NM; FWHM: 10 nm; center wavelength: 

280.0 nm.). The UV mirror (CVI, Albuquerque, NM) reflects 99% of the light between 250 

and 290 nm. A long-pass color glass filter (WG320, Melles Griot, Irvine, CA) and an 

Interference Filter (center: 350 nm, FWHM: 10 nm) serve as emission filters to block the 

scattering light. The native fluorescence from protein crystals is collected by a Nikon quartz 

camera lens (Nikon, f: 4.5, f.l.: 105 mm). A 16-bit, back-illuminated CCD camera (TE/CCD-

512-TKB, Princeton, NJ) is employed for the imagining. The CCD has about 40% quantum 

efficiency in UV region. 

Visible Light Detection System 

The visible light detection system is in the same system as shown in Figure 2. 

When visible light detection scheme is used, the UV light is blocked and vice versa. 

The light source for visible light detection is regular fluorescent luminaire. In the visible light 

detection mode, the emission filters used in fluorescence detection mode serve as neutral 

density filters. The same camera lens and CCD camera are used for imagining. 

Materials and Reagents 

Sodium phosphate was purchased from Fisher Scientific. TrisHCl 

(Tris(hydroxyl)aminomethane hydrochloride), sodium hydroxide, hydrochloric acid, sodium 

acetate, sodium chloride, HEPES (4-(2-hydroxyethyl)piperazine-1 -ethanesulfonic acid 

sodium salt) were purchased from Hampton Research, Inc. CHES(N-cyclohexyl-2-

aminoethanesulfonic acid), sodium citrate CAPS(N-cyclohexyl-3-aminopropanesulfonic 

acid), were purchased from Sigma. Lysozyme was purchased from Seikagaku Corporation. 
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All buffers were freshly prepared by adding appropriate aliquots of concentrated 

components purchased from Hampton Research Inc., Fisher Scientific and Sigma. The pHs 

were adjusted by adding appropriate amount of 1M sodium hydroxide or 1M hydrochloric 

acid solution purchased from Hampton Research Inc and were confirmed by a calibrated pH 

meter. 

Lysozyme solutions were prepared by dissolving powders in the appropriate buffer 

and then centrifuged to get rid of any solid substances. 

RESULTS AND DISCUSSION 

Parallel Liquid Aspiration and Dispensing 

The system is shown in Figure 1. Each vial containing one certain precipitant is 

sealed by a cap and thus a closed system with one inlet capillary and one outlet capillary 

forms. Care was taken to ensure that the capillaries and vials were free of air bubbles. 

Therefore, for each vial, the same amount of solution is pushed into the outlet capillary if 

there are some solution pushed into the vial from the inlet capillary since liquid is not 

compressible and the vial is sealed by the cap. The syringe pump is controlled by a personal 

computer. The total motion of the stepping motor in the syringe pump can be divided into 

48,000 steps. Therefore, each step of the stepping motor is responsible for about 0.104 uL 

(5000 uL is divided by 48000) solution dispensed to or aspirated from 81 capillaries. For 

each step of the stepping motor and each capillary, about 1.3 nL solution is aspirated from or 

dispensed into. Since the length, the inner diameter and inner surface friction are the almost 

same for all 81 capillaries, the volume of the solution aspirated or dispensed is the almost 

same for each individual capillary for each step of the motor (provided that the viscosity for 

the solution in each capillary is very similar; if not, the capillary bundle can be easily 



www.manaraa.com

22 

designed to be heated up to lower the viscosity to make all solutions have similar viscosities). 

There is minute dilution because of the introduction of water from the syringe to each vial. 

The volume of each vial is about 1.8 mL, so the dilution factor is 1.33% if 24 uL is 

introduced to each vial. Practically, this system can simultaneously aspirate or dispense 81 

different solutions from 20 nL to 24 uL. The maximum volume is decided by the total length 

of the capillary and the tolerance of the dilution factor (for example, for 1.33% dilution factor 

and 50 cm capillary length, the maximum volume for each precipitant the system can handle 

is 24 uL.), 

Figure 2 shows the system dispenses lOOnL and 200nL solutions in parallel. A six-

way valve is employed on the syringe pump. One way is for aspirating water into the 5mL 

syringe. One way is for waste. One way is for connection to capillary bundle. The rest ways 

are not used. The system can aspirate water from an inlet water bottle and then dispense 

water into capillaries by switching between ways of the 6-way valve. The precipitant 

solutions in the 81 vials are replaced after certain time to avoid the excess dilution. 

The précipitants in vials are shown in Table 1. 

There is no fundamental reason that the system has to be limited to 81 wells. It could 

be further scaled up if larger syringe and more powerful syringe pumps are employed, which 

is usually not a problem at all. 

Crystallization 

A fused silica crystallization plate with 81 micro wells as described in the 

experimental section was employed for the protein crystallization screening experiments. 

Figure 3 shows the crystallization plate and its comparison with a traditional VDX 24-well 

crystallization plate and a penny coin. A 50mg/mL lysozyme solution is used for the 

demonstration. The liquid handling system described earlier was used to aspirate solutions 
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from sample reservoirs into each capillary in the capillary bundle and to dispense solutions 

from each capillary to the target micro well in the crystallization plate. 

Firstly, the outlet capillaries were fully filled with précipitants and then 100 nL water 

from a water reservoir was aspirated into each outlet capillary in the bundle. The 100 nL 

water plug in each capillary serves as an isolation layer between protein solution and the 

precipitant in each capillary to avoid the possible precipitation because of their direct contact. 

Second, the water reservoir was replaced with a lysozyme solution reservoir and 100 nL 

lysozyme solution is aspirated into each capillary. Third, the lysozyme solution reservoir was 

replaced with the 81-well crystallization plate. The alignment between the capillary array 

head and the crystallization plate was done by manual adjustment of the three dimensional 

translational stage, assisted by a small CCD camera and one TV monitor. After the alignment 

was done, 100 nL lysozyme solution was dispensed to each micro well on the crystallization 

plate. Fourth, 200 nL solution from each capillary was dispensed into a waste reservoir. Fifth, 

the waste reservoir was replaced by the crystallization plate again and 100 nL precipitant 

solution from each capillary was dispensed into each micro well on the crystallization plate. 

After liquid dispensing, there are 100 nL lysozyme solution and 100 nL certain 

precipitant in each micro well. The crystallization process was done by a new crystallization 

method described in our paper [19]. 

The time that crystallization process takes depends on the protein and précipitants 

used and other experimental factors such as temperature, pH, etc. For the system 

demonstrated here, it usually takes about three or four hours, which is usually faster than the 

traditional vapor diffusion method and microbatch method. 
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Fluorescence Detection System 

For the detection of protein crystallization screening, visible light microscopy is 

widely used [15-20]. In protein crystallization screening, people usually need to make a 

decision whether a crystal showing up is a protein crystal or an inorganic crystal coming 

from buffer or precipitant in order to know which direction the further screening should go. 

Currently, there are three methods available to know the answer. One is to mount the crystal 

in question on the X-ray instrument to take a look at the diffraction pattern. But this method 

is not amenable for high throughput or automation. Moreover, most of time crystals showing 

up in the screening experiments are small and may not be able to diffract light well on home 

X-ray instrument, which is usually the accessible resource for x-ray diffraction experiments. 

Another method is to use mechanical force to press the crystal to do so called "crush test". If 

one hears the sound of click or see the suspect crystal becomes several smaller crystals, then 

it's an inorganic crystal. If one sees the crystal becomes powder and does not hear anything, 

that means he just crushed "a perfect good protein crystal". Protein crystals are generally 

extremely expensive and very hard to crystallize. Therefore, developing non-destructive 

methods is highly desired. One commercial company markets one small molecule dye which 

can fill the solvent channels in protein crystals to make the protein crystals look blue. The 

dye won not give the inorganic salts a blue color because inorganic crystals do not have 

solvent channels inside [20] and thus the small molecule dye won not be able to get inside 

the inorganic crystals. This method is non-destructive, but it is not amenable to automation 

and high throughput. It is highly desired to develop a detection scheme which is not only 

non-destructive but also amenable to high throughput and automatic protein crystallization 

screening detection. Here we introduce the fluorescence detection to high throughput and 

automated protein crystallography research field. Complementarily working with the 

transmitted visible light detection method in the system, fluorescence detection mode allows 

instantly distinguishing protein crystals from inorganic crystals without any complicated 
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experimental operation, which all other traditional and current methods can not do, according 

to our knowledge, and thus enables high throughput and automatic detection of protein 

crystals in the crystallization screening processes. 

Figure 6 shows the comparison of the fluorescence image and the visible light images 

for the same set of crystals including one inorganic crystal, which is sodium chloride as an 

example here. All protein crystals show up in both fluorescence and visible light fluorescence 

images, but the inorganic crystal only shows up in the visible light image. By careful optical 

design, most of the Raleigh scattering lights from crystals (no matter from protein crystals or 

inorganic crystals) were not collected by the camera lens. There are three critical factors 

here: the excitation filter, the emission filter and the angle between the excitation beam and 

the crystallization plate. One color glass filter, one band-pass interference filter (FWHM: 35 

nm) and one narrow band interference filter (FWHM: 10 nm) are combined together to serve 

as the excitation filters so that only very narrow band light around 280 nm can pass through 

to reach the crystallization plate. Two optical filters worked together to only allow a narrow 

band of lights around 350 nm to pass through to reach the CCD camera. A angle of 30 

(roughly) between the excitation beam and the crystallization plate was chosen to reduce 

most of the scattering lights. The rest of the scattering lights are ignorable or can be easily 

distinguished from fluorescence by setting up a right cutoff threshold when images are 

processed. 

Visible Light Detection System 

There is also a visible light detection mode in this system since it can give different 

information than the fluorescence mode. Two complementary detection modes working 

together in the same system enables a better detection for protein crystallization screening, 

especially suitable for high throughput and automatic screening. The image of protein 
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crystals taken by the system in the visible light detection mode is shown in Figure 7. the 

quality of the image can be improved by improving the quality of camera lens, choosing the 

right intensity of visible light and the right neutral density filters. Any questionable images of 

subjects can be examined or even possibly identified by comparing both fluorescent image 

and the visible light image. 

CONCLUSION 

A novel high throughput system for protein crystallization screening was developed. 

The liquid handling subsystem is able to aspirate or dispense 81 different or the same 

solutions in a high throughput and parallel way. The minimum volume of the solutions the 

system can handle is up to 20 nL and the maximum is up to 24 uL. Employing small amount 

of protein as of nanoliter significantly reduces amount of the protein required and thus 

significantly increases the number of the conditions that can be screened. It also significantly 

reduces the time and efforts the cloning and protein expression require and thus speeds up the 

whole process of structure determination. A brand new detection method, fluorescence 

detection method, which is highly compatible with high throughput and automatic protein 

crystallization screening, was introduced. The two detection schemes working 

complementarily, the fluorescence and visible light methods, provide the system with the 

novel capability of distinguishing protein crystals from inorganic crystals in an automatic, 

non-destructive and high throughput way, which no other method can do. The whole system 

is cost effective. Each subsystem is especially designed and highly suitable for high 

throughput and automation. The crystallization of lysozyme was successfully demonstrated 

on this system. 
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Table 1 The recipe for all précipitants. The solutions shown in each row were prepared 

by the same buffer solution with different concentration of sodium chloride as shown in the 

top row. 

Solution A is 0.1 M sodium phosphate buffer with 0.1 M sodium acetate at pH2.6; 

Solution B is 0.1M sodium citrate buffer with 0.1M sodium acetate at pH3.6; 

Solution C is 0.1M acetate buffer with 0.1M sodium acetate at pH4.6; 

Solution D is 0.1 M sodium citrate buffer with 0.1 M sodium acetate at pH5.6; 

Solution E is 0.1 M sodium citrate buffer with 0.1 M sodium acetate at pH6.6; 

Solution F is 0.1M HEPES buffer with 0.1M sodium acetate at pH7.6; 

Solution G is 0.1M TrisHCl buffer with 0.1M sodium acetate at pH8.6; 

Solution H is 0.1 M CHES buffer with 0.1 M sodium acetate at pH9.6; 

Solution I is 0.1M CAPS buffer with 0.1M sodium acetate at pH10.6; 

0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M 2M 

2.6 A1 A2 A3 A4 A5 A6 A7 A8 A9 

3.6 B1 B2 B3 B4 B5 B6 B7 B8 B9 

4.6 CI C2 C3 C4 C5 C6 C7 C8 C9 

5.6 D1 D2 D3 D4 D5 D6 D7 D8 D9 

6.6 El E2 E3 E4 E5 E6 E7 E8 E9 

7.6 F1 F2 F3 F4 F5 F6 F7 F8 F9 

8.6 G1 G2 G3 G4 G5 G6 G7 G8 G9 

9.6 HI H2 H3 H4 H5 H6 H7 H8 H9 

11 11 12 13 14 15 16 17 18 19 
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FIGURE CAPTIONS 

Figure 1. Photography of the liquid handling system. Center, 81 vials containing 

different précipitants. Center up, two 81-capillary boundless serving as inlet 

and outlet. Left, computer-controlled syringe pump. Right, capillary array 

head, 81-well sample plate and a small CCD camera used for alignment 

between the capillary head and the crystallization plate. 

Figure 2. The first picture shows lOOnL different précipitants^lOOnL for each) were 

dispensed. The second picture shows 200nL each of different précipitants 

were dispensed. 

Figure 3. The 81-well fused silica crystallization plate is shown on the top. The bottom 

is the comparison of the crystallization plate, a penny coin and the traditional 

VDX 24-well plate. 

Figure 4. Photography of the detection system. Center top, water-cooled CCD camera. 

Center middle, quartz camera lenses. Other specific optic components are 

shown in Figure 3. 

Figure 5. The illustration of the detection system including both fluorescence and 

visible light detection schemes. 

Figure 6. The comparison of fluorescence image and visible light image of the same set 

of crystals. The top one is a visible light image and the bottom one is the 

fluorescence one. The crystal in the first well at the second row is an inorganic 

(NaCl) crystal. Exposure time: 300 sec. 

Figure 7. The image of crystals taken in the visible light detection mode. Exposure 

time: 20 sec. 
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FIGURE 1 
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CHAPTER 3 A NOVEL CRYSTALLIZATION METHOD FOR 

AUTOMATED, HIGH THROUGHPUT PROTEIN 

CRYSTALLOGRAPHY 

Fenglei Li, Howard Robinson1 and Edward S. Yeung 

ABSTRACT 

A new crystallization method highly amenable to automation and high throughput 

protein crystallography was developed. The novel crystallization mechanism by employing a 

gas permeable membrane to achieve the gentle evaporation required by protein 

crystallization was identified. Protein consumption is significantly reduced by employing 

only nanoliter protein solutions for each trial and by exploring more conditions in a phase 

diagram for each trial. The method provides the capability of evaporation control during the 

crystallization process, which can facilitate the nucleation and grown processes. The protein 

crystals gotten by this method were proven to possess high x-ray diffraction qualities. The 

method is also suitable for scale-up experiments. 

1 Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000 
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INTRODUCTION 

Recently it is determined that the human genome comprises approximately 20,000-

25,000 protein-coding genes [1], The human proteome dictated by these genes will be about 

30,000 to 100,000 proteins [2]. The structures and functions of most of them are unknown. 

Knowing the three dimensional structures, especially all the key "functional" sites, of 

proteins can facilitate understanding on the relationship between structure, function and 

sequence of protein. Knowing the structures of protein target and the protein-ligand complex 

enables organic chemists to optimize the drug candidates in a more prompt and efficient way 

[4]-

Structural proteomics or structural genomics has become more and more important 

recently as an important part of functional genomics, whose goals are to systematically and 

thoroughly study the distribution, modification and interaction of gene products in tissues 

[17]. 

Three techniques have been employed for protein structure determination: X-ray 

crystallography, nuclear magnetic resonance spectroscopy and mass spectrometry. X-ray 

crystallography has been the predominant and still remained as the only method for three 

dimensional structure determinations, at atomic resolution, of protein molecules with 

molecular weight larger than 30 OOODa regardless of complexity [4], 

In order to get the three dimensional structures of protein molecules by X-ray 

crystallography, diffraction quality protein crystals must be gotten. Most of the time, protein 

crystallization is one of the major "bottleneck" in the whole process of protein structure 

determination (which generally includes cloning, protein expression, purification, quality 

assessment, crystallization, synchrotron x-ray diffraction data collection and structure 

determination) [5]. 
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The process of protein crystallization generally includes nucleation, crystal growth 

and cessation of growth. There are a lot of parameters influencing the crystallization process. 

It is very difficult to predict the growth conditions. The science of protein crystallization is an 

underdeveloped area. Protein crystallization is mainly a trial-and-error procedure. 

Currently, people still rely on empirical method by screening a batch of conditions, 

which comprise a lot of sets of combination of pH, temperature, type and concentration of 

precipitant and additives and so on. Due to the large number and interdependence of all 

possible experimental parameters, an exponential explosion in the number of possible 

conditions to be tried occurs [12]. 

This kind of screening normally requires large amount of purified proteins (25-

300mg). However, the availability of proteins is usually limited by the cost or resources 

associated with protein expression and purification [3], 

Moreover, in this proteomic era, a huge number of new proteins need to be 

determined by x-ray crystallography. The goal of functional genomics approximately 

requires determination of about 16, 000 new protein structures which have been chosen as 

modeling templates to evenly cover protein space [10]. 

Therefore, it is critical to significantly reduce the amount of protein consumed in the 

high throughput screening [3] and to increase the degree of automation of the whole process 

in order to significantly increase the throughput of the whole profess of protein structure 

determination. 

Therefore, miniaturization and automation are the two key factors in developing 

methodologies and instruments in order to realize high throughput for protein structural 

biology. 

Currently, there are mainly two traditional methods employed for high throughput 

crystallization screening development: microbatch and vapor diffusion (hanging drop or 

sitting drop). Conventional crystallization trials typically use 1-2 uL of both protein and 
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reservoir solution in each hanging drop. Generally speaking, these two methods are executed 

by manual operations. 

For reduction in the protein consumption, there are some efforts aiming to minimize 

these two methods. R. Stevens [15] proved as less as 20nL of both protein and reservoir 

solution can be used for the method of vapor diffusion to do protein crystallization. They 

showed[15] employing smaller volume of protein solutions not only requires less protein and 

in turn allows an increase in the screening of crystallization trails but also promotes faster 

vapor-diffusion mediated equilibration and thus decreases the overall time necessary for 

crystallization trials. 

The consequence of that reduction in the time required for crystallization is a 

concomitant reduction in the degree of protein degradation by oxidation, deamidation, 

aggregation and denaturation, which is especially important for those proteolytically 

sensitive proteins [6], G. DeTitta et al showed [16, 18] a miniaturized version of microbatch 

crystallization method, which can use as less as 200nL protein solutions. 

To increase the throughput of protein crystallization screening by the traditional 

methods mentioned above, several groups have been developing automated systems which 

can perform fast and a large number of crystallization trials. G. DeTitta et al [18] reported an 

automated system which can perform 40,000 microbatch experiments per day. They use 

high-density microtiter plates to screen 1536 conditions for each protein. Syrrx, Inc. [6] 

developed an automated robotic crystallization system including a series of robotics 

workstations. This system can dispense nanoliter volumes of protein droplets (20-100 nL) at 

an increased rate of setting up a 96-well plate in 2 minutes for sitting-drop vapor diffusion 

protein crystallization screening experiment [6], 

However, sophisticated and expensive robots have to be employed [6] because of the 

relatively complicated operation that the two traditional methods require. Therefore, 
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developing novel crystallization methods, which are highly compatible with automation and 

high throughput are highly desired. 

Here, we report one new method for protein crystallization screening, especially 

suitable for automation and high throughput. It consumes very small amount of protein 

sample by reducing the amount of protein required for each trial and increasing the number 

of conditions one single trial can explore. 

EXPERIMENTAL SECTION 

Crystallization Plates 

Two crystallization plates were employed for crystallization experiment in this work. 

Both of them were made of fused silica, which were purchased from Heraeus Optics, Inc. 

They were made by ultrasonic machining method because of their inherent properties of 

brittleness. One of them has totally eighty-one, nine by nine, small wells. The diameter of 

each well is 1.2mm and the spacing between wells is 500nm. The depth of each well is 

2.5mm. The other one has twenty-five bigger wells. The diameter of each well is 2.4mm and 

the spacing is between wells is 750nm. The depth of each well is 3mm. The fused silica was 

purchased from Heraeus Optics, Inc. Before each use, the plate was carefully cleaned by an 

ultrasonic device. 

Gas Permeable Membrane 

The gas permeable membrane was originally designed for cell culture. It allows 

oxygen, carbon dioxide and water vapor to pass through. The moisture transmission rate is 700 
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grams per square meter per 24 hours with 100% relative humidity vapor contacting the 

adhesive underside of the membrane [7]. 

Liquid Dispensing System 

The same liquid handling system has been employed and described in our previous 

work [11].'The liquid handling system has the capability of aspirating or dispensing 

simultaneously different solutions from 20 nanoliter to approximately 24uL. 

Materials and Reagents 

Lysozyme was purchased from Seikagaku Corporation. CHES (N-cyclohexyl-2-

aminoethanesulfonic acid), sodium citrate CAPS(N-cyclohexyl-3-aminopropanesulfonic 

acid), were purchased from Sigma. Sodium hydroxide, trisHCl (tris(hydroxyl)aminomethane 

hydrochloride), hydrochloric acid, sodium chloride, sodium acetate, HEPES (4-(2-

hydroxyethyl)piperazine-l-ethanesulfonic acid sodium salt) (crystallization grade) were 

purchased from Hampton Research, Inc. Sodium phosphate was purchased from Fisher 

Scientific. 

Lysozyme solutions were freshly prepared before each experiment by dissolving 

powders in the appropriate buffer and then centrifuged to get rid of any solid substances. 

All buffers were freshly prepared by adding appropriate aliquots of concentrated 

components purchased from Hampton Research Inc., Fisher Scientific or Sigma. The pHs 

were adjusted by adding appropriate amount of 1M sodium hydroxide or 1M hydrochloric 

acid solution (crystallization grade, purchased from Hampton Research Inc.) and were 

confirmed by a calibrated pH meter. 
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RESULTS AND DISCUSSION 

Protein Crystallization 

In the vapor diffusion method (either hanging drop or sitting drop), the drop of the 

mixture of a protein and a precipitant solutions is equilibrated against the reservoir solution 

(the same as the precipitant in the drop but twice of the concentration), which results in a 

continuous concentration of the drop until the equilibrium is achieved [12]. The evaporation 

rate decreases with the difference in concentration of the precipitant decreasing [12]. The 

concentration of the protein and precipitant in the drop increases during the diffusion process. 

Therefore, each drop "sweeps" a range of conditions [13]. 

In the original microbatch method, the super saturation level is kept fixed from the 

beginning of mixing the protein and precipitant solutions until protein crystallizes out from 

the solution. So, one single trail of microbatch method "sweeps" less conditions than vapor 

diffusion method. Therefore, overall, microbatch method takes more trails, namely more 

protein and precipitant, to hit the right condition for protein crystallization. 

Moreover, R. Stevens et al developed a modified vapor diffusion method which 

significantly decreases the amount of protein required by each single trial when vapor 

diffusion method is employed [15]. However, microbatch method is better than vapor 

diffusion method in terms of amenity to automation since the latter is involved more 

complicated operation and requires more sophisticated and expensive instrumentation [14]. 

Like vapor diffusion method, there is a trend to develop miniaturized microbatch 

methods, for example, G. DeTitta et al reported one modified microbatch method under oil 

which only requires 200nl protein sample [16, 18]. Despite the small protein consumption 

and good amenity to automation, microbatch method has the problem of the interaction 
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between the oil and the ingredients in the mother liquor such as some widely used organic 

précipitants and some small volatile organic molecules soluble in oil [15]. 

More importantly, in the microbatch method, since there is no a graduated 

concentration process as that in the vapor diffusion method, the direct mixing two high 

concentration solutions, the protein and precipitant solutions, can result in crystal showers or 

even precipitation [15]. Therefore, to develop a new method possessing the advantages of 

both vapor diffusion method and microbatch method is highly desirable. 

There are some efforts on giving the capability of concentrating protein and 

precipitant to microbatch method have been reported [17, 18] by employing an oil layer of 

mixing two different types of oils such as silicon oil and paraffin oils. 

Here, we reported a novel protein crystallization method which can not only 

significantly reduce the protein consumption, have the capability of exploring more 

conditions for each single trial, but also be very amenable to high throughput and automation. 

Similar to the vapor diffusion method, it has the concentrating capability and thus it explores 

a range of conditions in the phrase diagram. 

Unlike the vapor diffusion method, our method does not stop the exploring process 

since it won't reach the equilibrium like the vapor diffusion method does. More importantly, 

unlike the vapor diffusion method, it does not require complicated mechanical operations and 

essentially eliminates the need of expensive robots for high throughput and automation. 

Since there is no oil layer in our method, there is no interaction between oil and the 

ingredients of protein crystallization solutions. 

Figure 1 shows the crystallization plate used for demonstration of this new 

crystallization method. It is made of fused silica which can facilitate the fluorescence 

detection method we recently developed [11]. It could be made of glass or plastic or anything 

that is transparent if a regular transmitted light microscopy is employed as the detection 

method. For this particular plate, there are 81 individual micro wells which can hold 81 



www.manaraa.com

46 

different crystallization mother liquors. A high throughput and automatic dispensing multiple 

different crystallization mother liquors had been achieved by a system described in our recent 

work [11]. After dispensing solutions to the wells, a sticky gas permeable membrane can be 

applied on the surface of the plate. 

Figure 2 shows the configuration of the set up. In current experiment, 100 nL 50 

mg/mL lysozyme and 100 nL precipitant were mixed together. Since the water molecules in 

the mother liquor can diffuse out via the small pores on the gas permeable membrane, a slow 

evaporation resulting in concentrating the crystallization mother liquors can thus be achieved. 

If proper conditions are hit, protein crystals will show up in the micro wells. Since the only 

operation here is to apply the membrane to the plate, the whole process is very amenable to 

automation. Moreover, there are no fundamental reasons which can limit the number of 

micro wells that can be made on the plate. Therefore, this method is essentially suitable for 

high throughput. 

Since the gas permeable membrane is pseudo-transparent, a regular transmitted light 

microscope can be used directly for the detection. The membrane can also be peeled off to 

further facilitate the detection. We have shown [11] a fluorescence method can be employed 

as a complementary detection scheme to the regular transmitted light detection method for 

examining the protein crystallization screening results conducted on a fused silica plate. 

Therefore, this crystallization method is naturally amenable to multiple detection schemes 

and easy to achieve a better detection than other methods. 

Figure 3 shows some excellent lysozyme crystals we got by this method. 

X-ray Diffraction Experiment 

The diffraction quality of the lysozyme crystals were examined by X-ray diffraction 

experiments. Figure 4 shows one diffraction map got from a lysozyme crystal crystallized by 
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our new method. The x-ray experiment was done on a beam line at Brookhaven National 

Lab synchrotron radiation source. The crystal diffracts to 1.35 angstrom. 

This x-ray diffraction result proves the capability of our new method to generate well-

ordered high quality protein crystals. 

Evaporation Rate Control 

Figure 5 shows the schematic drawing of the phase diagram of different 

crystallization processes by the traditional vapor diffusion method (AB), the standard 

microbatch method (G) and our new method (AB, AC, AD, AE, AF). 

For the standard vapor diffusion method, once after the cover slip is closed, there is 

no control on the concentrating process, which is completely decided by the difference in 

vapor pressure between the drop and the reservoir solution. The concentrating process stops 

when equilibrium is reached. The process is showed as route AB. It's a "self-sweeping" 

process which screens more than one condition. 

In the original microbatch method, the concentration of the protein and precipitant 

don't change much after being mixed at the beginning of the experiment until there are some 

protein crystallize out from the mother liquor. It follows a route like G in Figure 5. Only one 

condition is tested for each single trial. Therefore, compared with the standard vapor 

diffusion method, less space in the phase diagram is explored. 

In our new method, depending on the relative rate of nucleation and evaporation, the 

actual process could take one of the different routes such as AC, AD, AE, AF showed in 

Figure 5, depending on the relative rate of evaporation and that of nucleation or 

crystallization of protein. Since the evaporation rate can be controlled by changing the pore 

sizes or distribution of pores, this new method allows different routes or more options for 
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exploring the phase diagram. This is important because this provides one more experimental 

parameter to vary in the crystallization screening experiments. 

Figure 6 shows three experiments in which different number of membranes were 

applied to the crystallization plate. Since the gas permeable membranes are sticky, one 

membrane can be applied to another one to form a two-layer membrane or more layers. One 

layer of membrane shows fastest evaporation rate. Two-layer membrane shows slower 

evaporation and the three-layer one had the slowest rate. This shows the gas transportation 

rate of the membrane was changed and thus changed the crystallization process. 

Therefore, to tailor the pore size of the membrane can essentially tailor the 

evaporation rate. Employing different membranes with different pore sizes at different stage 

of a crystallization process could essentially form a "evaporation gradient" which could 

allow a faster evaporation process at the very beginning and a slower evaporation rate for the 

later stage to facilitate the initial nucleation process and the later growth process since these 

two processes actually require different evaporation rates. 

Moreover, one single trail of crystallization process could have different evaporation 

rates for its different stages. So, it's possible to form a "evaporation gradient" by employing 

a membrane with smaller pores first and later to switch to a membrane with bigger pores 

since it's so easy to physically change the membrane without bring much disturbance to the 

solutions in the wells. 

Scale Up 

Generally larger volume of mother liquor yields bigger crystals, which can diffract 

light more strongly and thus provide high resolution data [12]. Therefore, scale-up capability 

is very important for a crystallization method when it is employed for growing the final 
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crystals used for data collection. Larger crystals were obtained in larger volume by this 

method. 

CONCLUSION 

A new crystallization method was developed. It is highly amenable to automation and 

high throughput protein crystallography because of its inherent properties. It significantly 

reduces the protein consumption by using nanoliter solutions. It further reduces the total 

protein consumption by exploring more space in a phase diagram for each single trial. It 

provides one more parameter to take into control in crystallization screening experiments, 

which is the evaporation rate control. The protein crystals gotten by this method exhibits 

excellent x-ray diffraction quality. This method has also excellent scale up capability. 
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FIGURE CAPTIONS 

Figure 1. The images of the crystallization plate (a) and the plate covered by a gas 

permeable membrane (b) 

Figure 2. The schematic drawing of the configuration of each micro well on the 

crystallization plate. 

Figure 3. The images of lysozyme crystals crystallized by the new method. 

Figure 4. The X-ray diffraction map of a lysozyme crystal crystallized by our new 

crystallization method. 

Figure 5. The schematic drawing of a protein phase diagram. AB represents the route 

which a protein crystallization process by standard vapor diffusion method 

takes. G shows the route taken by a standard microbatch method. AC, AD, AE 

or AF represents respectively the possible routes taken by our new 

crystallization method. 

Cstart is the concentration the mother liquor at the starting point of the 

crystallization experiment. 

Cfinal is the final concentration of the mother liquor when the crystallization 

process is stopped. 

Cp,start is the concentration of the protein solution at the starting point of the 

experiment. 

Cp,final is the concentration of the protein solution at the final point of the 

crystallization process. 

Figure 6. The images of lysozyme crystals crystallized under different conditions, (a) 

one membrane layer (b) two membrane layers (C) Three membrane layers, 

(a) 2 uL (1 uL 50 mg/mL lysozyme + 1 uL precipitant B7 ) 
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(b) 4 uL (2 uL 50 mg/mL lysozyme + 2 uL precipitant B7 ) 

(c) 6 uL (3 uL 50 mg/mL lysozyme + 3 uL precipitant B5) 

(d) 8 uL (4 uL 50 mg/mL lysozyme + 4 uL precipitant B7) 

Protein: 50 mL/mL lysozyme 

Precipitant: 

B7: 1.6 M NaCl in 0.1 M sodium citrate buffer with 0.1 M sodium acetate at 

pH 3.6; 

B5: 1.2 M NaCl in 0.1 M sodium citrate buffer with 0.1 M sodium acetate at 

pH 3.6; 
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Figure 3 
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CHAPTER 4 STRUCTURE DETERMINATION OF HUMAN 

LACTATE DEHYDROGENASE COMPLEXED WITH NADH 

BY X-RAY CRYSTALLOGRAPHY 

Fenglei Li, Howard Robinson2 and Edward S. Yeung 

ABSTRACT 

Lactate dehydrogenase plays a vital role in crucial glycolysis in many species. Human 

lactate dehydrogenase 1 (H4) completed with NADH was crystallized and x-ray diffraction 

data were collected with the best resolution at 2.5 A. The structures were solved by 

molecular replacement. 

The structure of LDH/NADH displays significantly different structural features 

compared with that of LDH/NADH/inhibitor in that some subunits in LDH/NADH show 

open conformation or two conformations while the subunits in LDH/NADH/inhibitor show 

all close conformation. 

2 Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000 
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Multiple LDH/NADH crystals were obtained and employed for x-ray diffraction 

experiments. Difference in subunit conformation was observed in the structures 

independently solved from multiple individual LDH/NADH crystals. 

Structural differences observed among crystals suggest the existence of multiple 

conformers in solution. 

INTRODUCTION 

Lactate dehydrogenase (LDH) had been found in many species from mammal and 

plants to bacteria [1], LDH catalyzes the reversible oxidation of lactate to pyruvate with 

concomitant interconversion of coenzyme NADH to NAD+. NAD+ is required for 

glyceraldehydes-3-phosphate to be oxidized to 1,3-biphophoglycerate during glycolysis for 

production of ATP. The reaction LDH catalyzes serves as an important biological means in 

many species to regenerate NAD+ from NADH for glycolysis to produce energy under 

anerobic conditions. 

In animal, LDH exists as a tetramer in a 222 symmetry. Each of the four subunits of 

LDH could be one of the two types of genetically distinct subunits: M, H, whose 

corresponding genes are LDH-A, LDH-B respectively. Therefore, LDH exists in five 

isozymes resulting from the hybridization of H and M subunits. LDH (H4) is usually found 

predominant in mainly anaerobic tissues such as cardiac muscle while LDH (M4) is the 

major form in anaerobic tissues such as skeletal muscle and liver [5], In addition, there is the 

third type LDH , the X form, corresponding to the LDH-C gene and usually found in animal 

testes. Different isozymes have different kinetic properties [1], 
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Structures of LDH from various species such as pig, dog fish, human, mouse, 

Bacillus stearothermophilus, bifidobacterium and Plasmodium falciparum have been 

determined by x-ray crystallography. 

The catalytic mechanism of LDH has been studied by various methods such as 

fluorescence polarization, fluorescence quenching spectroscopy, stop-flow kinetics and 

mutagenesis [1, 3], A compulsory order of substrate binding with coenzyme first was 

identified. Although series of steps were suggested for the reaction, the rate-limiting step has 

not been well determined. 

Based on the comparison between the structure of dog fish apoenzyme LDH M4 and 

that of an abortive ternary complex of LDH/NAD/pyruvate , the conformational change in 

the ternary complex was proposed to be induced by the coenzyme binding [2]. Later on, 

based on the information obtained from mutagenesis study [3, 17], the conformational 

change was proposed to be induced by the substrate binding for the case of LDH from 

Bacillus stearothermophilus [3]. The structure of apoenzyme LDH-C from mouse was found 

to be very similar to other LDH structures, surprisingly, however, the active site loop in this 

apoenzyme resembles not the "open" conformation found in apoenzyme dog fish LDH M4 

structure but the "induced" "close" conformation found in the ternary LDH complex 

structures [4], 

For the medical importance, Human LDH has been crystallized in the forms of H4 

and M4 complexed with NADH and an inhibitor, oxamate [5], The conformations of the 

active site loops in these two structures are all "close" as in the case of dogfish and porcine 

LDH[2]. 

To ultimately elucidate the reaction mechanism, structures of LDH in those important 

steps during the reaction coordinate could be of great value. However, in the current 

inventory of structures of LDH from mammal, there is no LDH/NADH binary structure yet. 
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This is largely because of the experimental difficulties of crystallizing LDH/NADH binary 

complex. However, valuable information regarding the active site could be missing because 

of the existence of inhibitor in the ternary complex since inhibitor has been thought to make 

the crystallization process easier by making LDH structure more rigid and thus the inhibitor 

could play a role in forming the ternary complex structure. 

With the high throughput capability of the screening method we have recently 

developed [13], we were able to screen a large number of crystallization conditions and 

successfully crystallize the LDH/NADH binary complex. 

In addition, our previous single molecule enzymatic kinetics study [9] suggests 

studying LDH and its binary complex with the coenzyme could reveal important information 

on the solution properties of protein molecules in terms of structure and function relationship. 

EXPERIMENTAL SECTION 

Materials and Chemical reagents 

Highly purified, isozyme grade lactate dehydrogenase 1 from human heart (H4-

hLDH) was purchased from Calzyme, Inc. NADH were purchase from Sigma. 

Crystallization grade sodium chloride, Tris (hydroxymethyl) aminomethane Hydrochloride, 

PEG 400, PEG 6000 were purchased from Hampton Research Inc. 

Crystallization of Lactate Dehydrogenase 

Lactate dehydrogenase was dialyzed for changing buffer, removing excess salt and 

increasing concentration to favor the thereafter crystallization experiments. LDH was 

dialyzed in 10 mM TrisHCl, 50 mM NaCl buffer in cold room for 30 hours. 
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LDH crystals were grown by hanging drop vapor diffusion method at room 

temperature. Six crystals of H4-hLDH were obtained by mixing equal volumes (2uL each) of 

a protein solution comprising 20 mg/mL H4-hLDH and 5mM NADH in lOmM TrisHCl, 

50mM NaCl at pH 8.0 and a well solution containing 20% PEG 4000 and 60% PEG 400 in 

0.20M TrisHCl at pH 8.1. One crystal of H4-hLDH was obtained by mixing equal volumes 

(2uL each) of a protein solution comprising 20 mg/mL H4-hLDH and 5mM NADH in lOmM 

TrisHCl, 50mM NaCl at pH 8.0 and a well solution containing 16% PEG 4000 and 60% PEG 

400 in 0.20M TrisHCl at pH 8.1. Crystals were blocks or rods of various approximate 

dimensions ~100um x ~50um x ~60um. 

Data Collection 

Crystals of H4-hLDH were flash cooled to liquid nitrogen temperature in their 

original crystallization mother liquor without adding anything else. X-ray diffraction 

experiments were done in a synchrotron beam at Brookhaven National Laboratory. The data 

were processed using HKL2000. Crystals were of P212121 symmetry. There is one 

homotetramer in the asymmetric unit. 

Structure Determination 

The structures of H4-hLDH were solved independently from seven independent x-ray 

diffraction data sets from seven crystals named as E, F, G, J, K, N, R. Seven structures were 

solved independently by molecular replacement with AMORE [6]. Graphical images of the 

structures were created by Pymol [10]. 

The coordinates of a homotetramer of human LDH/NADH/oxamate were employed 

as a search model [5], The molecular models were improved by refinements with CNS[7] 

and Xtalview [9]. Each subunit was treated independently throughput the refinement. The 

summary of final refinement statistics are shown in Table I. 
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RESULTS AND DISCUSSION 

Comparison of LDH/NADH and LDH/NADH/inhibitor structures 

Overall structures 

Human lactate dehydrogenase 1 (H4) is a homotetramer with 332 amino acid residues 

in each subunit and a molecular weight of 146K (formula weight 36559.6 for each subunit). 

In LDH/NADH complex, each subunit has an active site where it binds one NADH. The four 

active sites in H4 LDH from some species have been found to be independent, noninteracting 

binding sites [1] . 

Figure 1 shows the biological tetramer structure of H4 hLDH complexed with NADH 

at 2.5 A resolution determined by x-ray crystallography from the crystal named as "G". In 

this crystal structure, there is one homotetramer in each asymmetric unit. There is one NADH 

bound to each subunit. The space group is P212121. A summary of the crystallographic 

refinement is shown in Table I. 

The global characteristic of this structure is similar to those of LDH complexed with 

other ligands and inhibitors. Extensive secondary structures are found in this enzyme. Amino 

acid residues located in the helices account for approximately 40% of the total residues. Beta 

structures are responsible for approximately 23% of total residues [1]. As in the structures of 

LDH from human (LDH/NADH/inhibitor) and other mammalian species, in each subunit, 

there are two domains formed by residues 20-162, 248-266 and 163-247, 267-331 [5], The 

active site or substrate binding site is at the interface of the two domains. Six strands of 

parallel beta sheets form the NADH binding domain. As part of the domain. Residues 99-110 

form a loop which plays an important role in NADH, substrate binding and LDH catalytic 

reaction. 

For human lactate dehydrogenase 1 (H4), despite the large resemblance in global 

structure (Figure 2), in this study, a striking difference in terms of conformation of the active 
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site loop has been observed between the structures we determined from hLDH/NADH 

complex and those structures from LDH/NADH/inhibitor complex [5] . All active site loops 

(residues 99-110) in the four subunits are "closed" conformations in the human H4 

hLDH/NADH/inhibitor structures [5]. However, in the LDH/NADH structures we have 

determined from multiple crystals in this study, we found the active site loops are not always 

in closed conformations. In some subunits, the conformation of the active site loop is closed 

while in others it is either open or two-conformation (open and closed). 

Subunits with close conformation 

In the hLDH/NADH structure determined from crystal G, the conformation of the 

active site loop (formed by residues from 99 to 110) in subunit A, B, C and D is found to be 

two-conformation, closed, two-conformation, closed respectively. 

Figure 3 shows the closed conformation found in the subunit B of the structure 

determined from crystal G. Superposition of this structure with the structure of 

hLDH/NADH/inhibitor (Figure 4) shows the overall structural features are about the same. 

Those important residues located in the active site which are involved in catalytic reaction 

such as His 193, Arg 107, Arg 99 are in about the same positions. The coenzyme NADH is 

also located in about the same position. 

Subunits with open conformation 

Crystal K was obtained in the same drop (crystallization mother liquor) and was thus 

crystallized at exactly the same crystallization condition as crystal G. Two independent x-ray 

diffraction experiments were done on the two crystals and two data sets were independently 

processed. 
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Overlaying Subunit A Crystal IC with Subunit B Crystal G shows overall resemblance 

except one striking difference that the active site loop is in an open conformation in Subunit 

A Crystal K (shown in Figure 5) rather than a close conformation as shown in Subunit B 

Crystal G. In the open conformation, the active site loop is extended towards solvent and the 

distance between Glu 102 and its corresponding position in close conformation is more than 

10 angstrom. Both Arg 99 and Arg 107, the former related to NADH binding and the latter 

involved in stabilizing transition state [11] in the catalytic reaction, are located in this active 

site loop, therefore their positions are significantly different from those in a close 

conformation. 

In the structure of human H4 LDH/NADH/inhibitor, Arg 99 forms a hydrogen bond 

with the pyrophosphate of NADH and the guanidinium group of Arg 107 is within hydrogen 

bonding distance of both the reactive carbonyl of pyruvate and imidazole ring of the catalytic 

His 193 as in the structures of LDH from other species [3]. These interactions were thought 

to be important for the catalytic reaction in the way of stabilizing either substrate or transition 

state complex [3]. The observation that the position of 193 in an open conformation is the 

same as in a close one may indicate this residue is independent from substrate binding. It 

may be also independent of the conformation of the active site loop since its position is the 

same for both open and close conformation. 

Subunits with two conformations 

More interestingly, Subunit C Crystal G shows both open and close conformations. In the 

electron density map (Figured], in Subunit C Crystal G, the magnitude of the loop electron 

density in open conformation is estimated to be similar to that in the close one, but it is 

approximately half of that in Subunit B Crystal G. Moreover, the magnitude of the electron 

density of NADH in Subunit C Crystal G is about the same as that in Subunit B Crystal G. 
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This suggests the existence of two conformation in Subunit Crystal G is independent on the 

amount ofNADH bound. 

Comparison of multiple LDH/NADH structures 

To compare the structures from different crystals, subunit A in K and subunit B in G 

are overlaid as shown in Figure 6. Most parts of the two structures are similar and can be 

overlapped well, but the two loops show significant difference as large as 10 A. 

Figure 7 is the superposition of subunit B in K and subunit B in G. Both subunits 

have close conformations and the difference in these two subunits are inappreciable. 

The heterogeneity in loop conformation existing in one crystal and among multiple 

crystals could result from (1) sequence (2) crystallization conditions (3) amount ofNADH 

complexed with LDH (4) crystal packing. They are discussed as follows: 

Sequence 

The LDH in this study is a homotetramer. All crystals came from the same 

crystallization experiment and thus all crystals come from the same LDH solution. Therefore, 

all the sequences of the subunits should be the same. 

Crystallization conditions: 

Since both crystal G and crystal K were obtained from the same drop of 

crystallization mother liquor, crystallization condition is thus unlikely the reason. 
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Amount ofNADH complexed with LDH 

In crystal G, the amount (electron density) of NADH in Subunit B is about the same 

as that in subunit C. B shows one single close conformation, but C has two conformations. 

In crystal K, the amount of NADH in subunit A, which is an open conformation, is 

lower than NADH in other subunits in crystal K. It may seem the low amount of NADH is 

responsible for the open conformation. However, in crystal F (also crystallized at the same 

condition), NADH in subunit A is lower than that in other subunits, but subunit A is in two-

conformation and the electron density of the close conformation is stronger than the open 

one. Therefore, amount of NADH complexed with LDH is not correlated with a loop 

conformation. 

Crystal Packing 

If the difference in conformation results from crystal packing, then all the subunits 

located in the same location in the asymmetric unit should have the same conformation. 

However, this is not the case for the structures discussed here. For example, in crystal G, the 

conformations of four loops are two-conformation, close, two-conformation and close 

respectively. However, in crystal K, the conformations of subunits located at the 

corresponding positions are open, close, two-conformation and two-conformation. Two 

crystals have the same arrangement for the subunits in the asymmetric unit. Since the same 

location in the asymmetric unit doesn't lead to the same conformation, crystal packing should 

not the reason for the heterogeneity in loop conformation. 

Based on the analysis above, the existence of heterogeneity of loop conformation is 

seemingly due to the inherent properties of LDH itself, i.e. LDH may exists in multiple 

conformations in solution. Moreover, if the different conformera are in a fast equilibrium as 

suggested by traditional protein solution thermodynamics, the loop would not have been seen 
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in an x-ray crystal structure because of the time-averaging nature of the technique. Therefore, 

those conformers should be long-lived species in solution. 

CONCLUSION 

Human lactate dehydrogenase 1 complexed with NADH was successfully crystallized 

without adding any inhibitor and the best resolution of x-ray diffraction data is 2.5A. 

Heterogeneity in conformation of the active site loop has been observed among subunits in 

the same crystal and among multiple crystals. Existence of long-lived LDH conformers in 

solution is suggested. 
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Table 1. The resolutions of seven x-ray diffraction data sets collected on seven individual 

crystals and corresponding R factors and R free. 

e f G j K n r 

Resolution 2.9 2.8 2.5 2.8 2.6 3 2.8 

R .2284 .2267 .2194 .2307 .2369 2311 .2301 

R free .3166 .3101 .2790 .3172 .3027 .3140 .3156 
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FIGURE CAPTIONS 

Figure 1. This is the biological tetramer of LDH from crystal G. Each subunit is labeled 

by a different color. 

Figure 2. Superposition of crystal G (in green) with 1I0Z (in red). 

Figure 3. Loop (residue 99-109 shown in green) subunit B of crystal G. 

NADH is shown in blue. The loop has a close conformation. 

Figure 4. Superposition of Subunit B, Crystal G (green) with Subunit A, 

LDH/NADH/oxamate (red, 1IOZ) 

Figure 5. Subunit A of crystal K is shown in red, open conformation. NADH is in blue. 

Figure 6 Electron density map of Subunit C of Crystal G: two conformations 

Figure 7 Superposition of subunit A in K (red) and subunit A in G (green) 

Figure 8. Superposition of subunit B in K (red) and subunit D in G (green) 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 



www.manaraa.com

80 



www.manaraa.com

81 

Figure 7 
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Figure 8 
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CHAPTER 5 GENERAL CONCLUSIONS 

An integrated system for protein crystallization screening at large scale in a high 

throughput manner was developed. The liquid handling subsystem has the capability of 

aspirating or dispensing 81 different or the same précipitants in a high throughput and 

parallel way. The volume range of solutions it can handle is between 20nL and 24uL. Small 

amount protein consumption as less as nanoliter for each condition significantly increases the 

total number of the conditions that can be screened. It also significantly reduces the time and 

efforts that cloning and protein expression require. 

A new detection method, native fluorescence, which is highly compatible with high 

throughput and automatic protein crystallization screening, was introduced. The two 

detection schemes, the fluorescence and visible light methods, working together 

complementarily provide the system with the novel capability of distinguishing protein 

crystals from inorganic crystals in an automatic, non-destructive and high throughput 

manner, which no other method can achieve at this time. The whole system is cost effective. 

Each subsystem is especially designed and highly suitable for high throughput and 

automation. The crystallization of lysozyme was successfully demonstrated on this system. 

A new crystallization method was developed. It is highly amenable to automation and 

high throughput protein crystallography because of its inherent properties. It significantly 

reduces the protein consumption by using nanoliter solutions. It further reduces the total 

protein consumption by exploring more space in a phase diagram for each single trial. It 

provides crystallographers one more parameter to take into control in crystallization 

screening experiments, the evaporation rate control. The protein crystals gotten by this 

method exhibits excellent diffraction quality. This method also has excellent scale up 

capability for growing large size crystals. 
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Human lactate dehydrogenase 1 (H4) complexed with NADH was successfully 

crystallized without adding any inhibitor and the best resolution of x-ray diffraction data is 

2.5A. Heterogeneity in conformation of the active site loop has been observed among 

subunits in the same crystal and among multiple crystals. Existence of long-lived LDH 

conformers in solution is suggested. 
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